
EDITH COWAN UNIVERSITY

CSI3344 DISTRIBUTED SYSTEMS

REPORT

Distributed Systems
PITRE: Three-Tiered RMI Implementation

Authors

Mark JAMSEK (10502496)

Muzhi TIAN (10471011)

Supervisor

Dr Jitian XIAO

Author Note

Word count: 3368 (excluding listings, figures, tables, and references)

Due: 29 May 2023

Submitted: 27 May 2023

CSI3344: Distributed Systems Report

Executive Summary

PITRE1 demonstrates a remote method invocation (RMI) implementation of a three-tiered

distributed system. All components are written in Java with a MySQL database backend.

Both the second- and third-tier servers are designed to run remotely to the client, and the

database itself can be hosted anywhere provided it is reachable by the database server.

The primary function of the system is to generate tax return estimates and persist income

records to the database. This is accomplished by allowing users to enter gross annual

income in the form of twenty-six biweekly net pay and tax withheld values on the client

application. These data are then sent to the server, which performs two tasks: (1) the

data are packaged into a request that is sent to the database server to be converted into

entities that can be persisted to the database; and (2) the server runs the data through an

equation to determine whether tax monies are outstanding or have been paid in excess

such that a tax return is due. The server crafts a response object, which is sent back to the

client, and the result is displayed to the user.

The system is machine-independent, with Java the only runtime dependency of the

client and servers, and the database is a MySQL server running in a Google Cloud in-

stance; however, as mentioned, the database can be provisioned on any host reachable

from the third-tier database server. The entire distributed system comprises three tiers:

The first tier is a text-based user interface that provides the command driven client for

end users to enter income records. The records are sent to the second tier, which is a

server responsible for validating users, processing records, interfacing with the database

server, evaluating data, and generating tax return estimates. Lastly, the database server

functions as the third tier, which persists user data entered at the client application and

received via requests from the second tier server to save, retrieve, and delete records.

PITRE is fast, portable, and robust with an intuitive user interface that provides a friendly

user experience.

1https://cvs.bsdbox.org/pitre

Mark Jamsek, Muzhi Tian 1

https://cvs.bsdbox.org/pitre

CSI3344: Distributed Systems Report

Contents

Executive Summary 1

1 Introduction 3

2 Requirements and Scope 4

2.1 Client: Presentation Tier . 5

2.2 Server: Business Logic Tier . 5

2.3 Database Server: Data Management Tier . 6

3 Remote Method Invocation 7

4 PITRE: Overview 9

4.1 Design and Implementation . 10

4.1.1 Interfaces . 10

4.1.2 Client . 10

4.1.3 Server . 12

4.1.4 Database Server . 14

5 User Manual 15

5.1 Build . 15

5.2 Run . 16

5.2.1 Authentication . 17

5.3 Test Cases . 17

5.3.1 Authentication . 17

5.3.2 Tax File Number Validation . 18

5.3.3 Income Record Validation . 19

5.3.4 No Tax File Number . 19

5.3.5 Tax File Number Found . 20

5.3.6 Tax File Number Not Found . 21

5.4 Windows Usage . 21

6 Summary 22

References 23

Mark Jamsek, Muzhi Tian 2

CSI3344: Distributed Systems Report

1 Introduction

Personal Income Tax Return Estimator (PITRE) is a three-tiered distributed system. It

is implemented in Java using remote method invocation (RMI) and MySQL Server. The

primary use case PITRE aims to facilitate is generating tax return estimates for users who

have provided personal income records. To realise this goal, the system was designed

with modularity, portability, speed, and the user experience in mind. For this reason,

Java was an obvious choice as it can run anywhere in the Java virtual machine without

compromising speed, and is highly modular. Three discrete packages comprising two

server libraries and a client application were implemented. The client-side application

is the first tier, which is responsible for accepting and performing preliminary prepro-

cessing of user input. These data are sent to the second-tier server via RMI, which is

where users are authenticated and further, more rigorous data validation is performed.

Finally, the database server acts as the third-tier, which is the interface to the MySQL

database and enables persisting user data for subsequent retrieval.

This report will comprise four parts: first, a brief explanation of the problem do-

main and requirements of the system; second, an exposition of remote method invoca-

tion (RMI) and related techniques used in this project; third, an overview detailing the

design and implementation of the PITRE distributed system; and fourth, a short manual

including screenshots, example test cases, and basic instructions for endusers to follow.

Mark Jamsek, Muzhi Tian 3

CSI3344: Distributed Systems Report

2 Requirements and Scope

As a minimum viable product (MVP), the PITRE client application is limited in scope

to the tax return estimate (TRE) client; that is, a payroll-tax client (PTC) that enables

companies to calculate payroll tax is outside the scope of this project.

Table 1: Tax Rate

Gross Income Tax Rate

$0–$18, 200 nil
$18, 201–$45, 000 19¢ for each $1 over $18,200
$45, 001–$120, 000 $5,092 plus 32.5¢ for each $1 over $45,000
$120, 001–$180, 000 $29,467 plus 37¢ for each $1 over $120,000
> $180, 000 $51,667 plus 45¢ for each $1 over $180,000

The primary use case is to calculate and display TREs according to the provided an-

nual income based on the tax rates listed in Table 1. In addition, a medicare levy of 2% is

unconditionally applied, and depending on the private health insured status of the taxee,

an additional medicare levy surcharge (MLS) may also be applied (Table 2). Records are

persisted to the database where they can be retrieved or updated for subsequent TREs,

which are calculated using the following equation:

estimate = gross_income− net_income− tax−medicare_levy−medicare_surcharge

If estimate is positive, this is the amount of money the taxee can expect to be returned

from the Government’s Tax Office (GTO). If negative, however, |estimate| is the amount

the taxee still owes in taxes to the GTO.

Table 2: Medicare Levy Surcharge

Gross Income Surcharge

$0–$90, 000 0%
$90, 001–$105, 000 1% of gross income
$105, 001–$140, 000 1.25% of gross income
> $140, 000 1.5% of gross income

Importantly, as a distributed system,

each service shall be able to run on dif-

ferent machines. Nevertheless, for the

purposes of this demonstration, first-

, second-, and third-tier services will

run on the same machine; the SQL

database, however, will run on a re-

mote Google Cloud instance running

MySQL Server 5.6.

Mark Jamsek, Muzhi Tian 4

CSI3344: Distributed Systems Report

2.1 Client: Presentation Tier

The client will prompt the user for their personal ID, tax file number (TFN), and private

health insurance status. If a TFN is provided, the client will query the server for any

records that may be in the database which, if found, will be returned to the client and the

user prompted to either discard or request an estimate based on these records. However,

if no records are found, or a TFN is not provided, the client will prompt the user to enter

twenty-six biweekly income records. As such, the functional requirements of the client

include:

1. Only authenticated users shall use the system.

2. Users may or may not have a tax file number (TFN).

3. A TFN must be nine (9) numeric digits.

4. Users must provide health insurance status to request a TRE.

5. Users must enter twenty-six (26) biweekly income records to request a TRE.

6. Income records must be in the form of a tuple comprising net pay and tax withheld;

that is, net,tax.

7. Net and tax values must be integers or numeric values that scale to two decimal

places.

8. Users shall choose whether to save their records to the database.

9. Users shall choose whether to delete their records from the database.

10. Users shall be able to discard entered records and quit the application at any time.

11. Users shall be able to discard entered records and restart the application at any

time.

2.2 Server: Business Logic Tier

In this three-tiered distributed system, the server also acts as a client, consuming the ap-

plication programming interface (API) implemented by the third-tier database server. Its

responsibilities as a server, however, are to authenticate users, validate tax records, and

evaluate user-supplied data to generate TREs. As mentioned, the server also interfaces

with the databse server by sending requests regarding data persisted to the database. For

example, after validating income records, the server will issue a request to the database

Mark Jamsek, Muzhi Tian 5

CSI3344: Distributed Systems Report

server to create a new record for the user, which comprises all of the submitted income

records. Similarly, after validating a TFN submitted by the client, the server will send a

query to the database server for any records associated with the provided TFN. To realise

these responsibilities, functional requirements of the server include:

1. Only authenticated users shall access their own records.

2. Biweekly records shall be displayed as a sequence of net pay and tax withheld

tuples.

3. Accurate TREs according to the abovementioned formula and tax rates (Table 1 and

Table 2) shall be provided to users.

4. Each TRE shall display the annual gross and net income, total tax withheld, and

either tax still owed or monies to be returned.

5. Users who provide a TFN shall be able to retrieve their records from the database

and request a TRE.

6. Users who provide a TFN shall be able to delete their records from, and enter new

records into, the database.

2.3 Database Server: Data Management Tier

The database server is responsible for interfacing with the MySQL database and provid-

ing an API for the second-tier server. Its primary function is to manage requests destined

for the database, such as persisting or retrieving tax-related user records. As such, func-

tional requirements of the third-tier server include:

1. Records shall be persisted to the database.

2. Records shall be retrieved from the database.

3. Records shall be deleted from the database.

4. One set of annual income records per personal ID and TFN shall be allowed.

Mark Jamsek, Muzhi Tian 6

CSI3344: Distributed Systems Report

3 Remote Method Invocation

As PITRE is implemented in Java, it makes use of remote method invocation (RMI) to

send messages between the client and server processes. For this reason, a brief exposition

of RMI is provided. Remote method invocation (RMI) enables communication between

objects running on distributed architecture. According to Tanenbaum and Steen (2014,

p. 478), RMI is very similar to the remote procedure call (RPC), except that it operates

on distributed objects with systemwide references. Further, such global referencing im-

proves access transparency and parameter-passing semantics when compared to RPC.

This comports with Coulouris et al. (2014, p. 220), who explain that, while closely re-

lated to RPC, RMI enables passing parameters by object reference—not only by value.

On the other hand, at the lowest level, RMI is essentially the same as RPC, and both are

used for the same reason: to pass messages and call remote procedures on remote hosts

in distributed systems. The primary difference is that RMI is embedded in the Java pro-

gramming language, while RPC is language-agnostic. When RMI was introduced by Sun

Figure 1: Logical illustration of the remote method invocation.

in 1997 with the release of Java Development Kit 1.1, RPC had already been around for

more than a decade (Waldo, 1998, p. 5). Request for Comment (RFC) 674 established the

procedure call protocol in the 1970s, which laid the theoretical underpinnings of modern

Mark Jamsek, Muzhi Tian 7

CSI3344: Distributed Systems Report

RPC protocols. Subsequent work culminated in Birrell and Nelson’s Cedar RPC in 1984,

commonly considered one of the earliest practical RPC implementations, and the stand-

ard on which later APIs were based (McCaffrey & Meiklejohn, 2016). There are various

forms of RPCs such as synchronous, where the client blocks till a response is received,

and asynchronous where the client continues working immediately after dispatching the

call. Sun Java RMI is inherently synchronous, but various libraries have been implemen-

ted to overlay RMI and provide asynchronous operation.

The elegance of both methods, however, is that they abstract away the implementa-

tion details of intermachine communication. In other words, it allows clients to call pro-

cedures on remote machines as though they were local; that is, without considering the

inherent complexity of sending and receiving messages. As illustrated in Figure 1, when

the client invokes a call to a remote object, it is first received by what is referred to as

the stub on the local machine. A stub is a proxy for the server-side procedure or method.

The stub serialises the call and parameters, which is the process of flattening the object

into a transmissible format; in the case of RMI, this is a binary-encoded stream of bytes

(i.e., message). This technique is often referred to as marshalling (Coulouris et al., 2014,

p. 178; Sayar et al., 2023, p. 25). Once the message is crafted, it is passed to the remote

reference layer (RRL), which provides the low-level interface between client and server

(Domenici et al., 2000). The RRL calls the invoke() method on the client, and sends the

message to the server, where the server-side RRL receives the request and forwards the

message to the skeleton. The skeleton is the server equivalent of the client stub, and, like

the stub, is responsible for deserialising the message, which is commonly referred to as

unmarshalling. This is the process of reconstructing the bytes back into the same call and

parameters initially received at the client stub. The server can then invoke the method,

whereby this process is repeated in reverse when the server sends the result back to the

client.

The observant reader will ask, how does the client know where to send the message? This

is managed by the RMI registry: a database of remote objects and corresponding ad-

dresses. When a object is intended for RMI, it is registered with the registry by invoking

the bind() method, which assigns an addressable name to each object. After this, clients

can lookup available objects by contacting the registry, which uses the unique name as a

global reference to route RMI requests. As such, from the perspective of the programmer

and readers of the source code, RMI appears indistinguishable from typical method calls.

Mark Jamsek, Muzhi Tian 8

CSI3344: Distributed Systems Report

4 PITRE: Overview

PITRE is a three-tier distributed system that consists of a client, also called the presenta-

tion tier; a server, often called the business logic or application tier; and database server,

which is also known as the data management tier. The architecture of this design is il-

lustrated in (Figure 2). Six Java archive (JAR) packages (Table 3) comprise the PITRE

system, three of which represent each tier: the first tier is contained in the pitre-client

package; the second tier is contained in the pitre-server package; and the third tier is

contained in the pitre-dbsrv package. The fourth and fifth JARs are pitre-interfaces

and pitre-core, respectively. Both of which are dependencies of each tier, and the sixth

and final JAR is pitre-dbsrv-hibernate—a dependency of the data management tier,

pitre-dbsrv.

Figure 2: From ‘Three-tier architecture’ by Hyperskill, n.d. Three tier distributed system compris-

ing the presentation tier (client), business logic tier (server), and data management tier (database

server).

While the following sections explain the design and implementation details of the

PITRE distributed system, one critical component is provided by the Java runtime envir-

onment (JRE): the rmiregistry service. This is responsible for binding names to global

references of the remote objects implemented in this project, and which are usually pro-

visioned on the remote hosts, so that each RMI is able to locate the remote object.

Mark Jamsek, Muzhi Tian 9

CSI3344: Distributed Systems Report

Table 3: Java Archives

JAR Classes Interfaces Dependencies

pitre-client CommandlineInterface,

ConsoleInput

IUserInput pitre-{core,interfaces}

pitre-server PITREDriver, Auth IEstimate, IAuth pitre-{core,interfaces}

pitre-dbsrv DBsrv IPersist, IRepository,

Serializable

pitre-{core,interfaces},

pitre-hibernate

pitre-core Names, Record, Request,

Result, Taxee, Taxes

IRecord, IRequest,

ITaxee

pitre-interfaces

pitre-dbsrv-hibernate Repository, DBRecord,

DBRecordID

IPersist, IRepository pitre-{core,interfaces},

hibernate, mysql

pitre-interfaces IAuth, IEstimate,

IPersist, IRecord,

IRequest, ITaxee,

Remote, Serializable

4.1 Design and Implementation

4.1.1 Interfaces

PITRE implements a number of interfaces that provide common abstractions to each tier.

Some interfaces are used by multiple processes, while others are purely for client con-

sumption. Table 4 documents some of these interfaces, explaining their role in the system.

Tier-specific interfaces are detailed in their respective sections.

4.1.2 Client

The first tier hosts the client application, which provides the frontend user interface (UI)

and performs preliminary preprocessing of user input before sending requests to the

server. The UI is a text-based interface, implemented with the IUserInput interface

(Table 5), which is command driven by a set of operations that are presented for user

selection. At startup, the user is prompted for credentials, which are sent to the server

for authentication; all clients must be authenticated before further input is accepted. This

authentication request is performed by invoking the remote IAuth interface login() API.

If successfully authenticated, the user will be prompted to input their personal ID before

Mark Jamsek, Muzhi Tian 10

CSI3344: Distributed Systems Report

Table 4: Interfaces

Interface Description API

IAuth client authentication login()

IRecord represent taxee biweekly income records rid(), net(), tax(),

gross()

IRequest handle passing requests for taxee records pid(), taxrecord()

ITaxee represent a taxee including all relevant

details

id(), payrecords(),

insured(), get(), add(),

nrecords(),

iscomplete()

IRepository direct communication between db server

and MySQL database

saveOrUpdate(),

delete(), get()

being asked if they possess a tax file number, which, if in possession, they will be promp-

ted to enter. The ID and TFN are sent to the server to be validated before the server issues

a request to the database server for any associated records. If the user does not have a

TFN or no records are found for the TFN provided, the user will be prompted to enter

twenty-six biweekly income records. The client performs preliminary preprocessing of

these records to ensure the format is valid, which is performed by the parsetuple()

method; an additional validation layer, however is handled by the server to ensure only

valid records are persisted. When all records are entered, if the server returns a response

indicating the record was valid, the client will prompt the user to save and request a TRE

with these records. At this point, the user can either discard and re-enter new income re-

cords or request an estimate. In the former case, the input loop will begin a new iteration,

in the latter, the server public API estimate() is consumed and the results are displayed

to the user. For a user-friendly experience, the input handler monitors user input for

quit and restart events, which can be invoked at any time with the case-insensitive Q or R

commands.

Mark Jamsek, Muzhi Tian 11

CSI3344: Distributed Systems Report

Table 5: IUserInput Interface

Method Description

read() read arbitrary user input till a newline (i.e., \n is reached)

read_username() like read(), but prompts for a username

read_passwd() prompt for password but do not echo characters entered to stand-

ard output

4.1.3 Server

The business logic tier hosts the server, which is the backend engine in the PITRE dis-

tributed system. As mentioned, this service operates as a server to the client, but also

as a client to the database server. In the first instance, two interfaces present the public

API to the client: IAuth, which is responsible for authenticating clients with the login()

API; and IEstimate, which holds all of the business logic to process records and compute

TREs. The public APIs provided by the IEstimate interface are documented in Table 6.

It is the estimate() method, which when invoked by the client, performs the primary

Table 6: Server API

Method Description

estimate calculate and return TRE result

save save taxee income records

load load taxee income records

delete delete taxee income records

Note. Second tier server implements the IEstimate interface.

use case of generating a TRE by calling Taxes.apply() on a Taxee instance. Listing 4.1

shows the apply() method, which returns the Result object that is used to display the

TRE to the user. The Result object is an abstract data type comprising all the ingredients

Mark Jamsek, Muzhi Tian 12

CSI3344: Distributed Systems Report

needed for the server to send an estimate outcome back to the client.

public static Result

apply(ITaxee taxrecord)

{

double gross, net, tax, income_tax, medicare_tax, tre;

Result.Outcome r;

net = total_net(taxrecord.payrecords().values().stream());

tax = total_tax(taxrecord.payrecords().values().stream());

gross = net + tax;

income_tax = income_tax(gross);

medicare_tax = medicare_tax(gross, !taxrecord.insured());

tre = gross - net - income_tax - medicare_tax;

if (tre > 0.0)

r = Result.Outcome.RETURN_DUE;

else if (tre < 0.0)

r = Result.Outcome.TAXES_DUE;

else /* even money */

r = Result.Outcome.TAXES_PAID;

return new Result(r, Math.abs(tre), gross, net, income_tax,

medicare_tax);

}

Listing 4.1: The apply() method of the Taxes class, which calculates a Taxee TRE.

In its intermediary role as a communication conduit between the presentation and

data tier, the server consumes public APIs provisioned by the database server to request,

persist, and delete data. This is a unique component of three-tier architecture where the

Mark Jamsek, Muzhi Tian 13

CSI3344: Distributed Systems Report

server is also a client.

4.1.4 Database Server

The third tier operates as the direct link to the database and as such is responsible for per-

sisting and managing user data. In this capacity, the composite DBsrv class implements

the IPersist interface, which provides three public APIs: (1) put(), which accepts a re-

quest that is converted into appropriate entities for persisting to the database; (2) get(),

which accepts an ID and TFN to lookup and return as a request object after converting

database entities accordingly; and (3) delete(), which also accepts an ID and TFN albeit

to lookup and delete the entry from the database. Technically, data management tiers

are also clients insofar as they consume database server APIs, often by implementing

methods or calling library routines that correspond to SQL statements such as INSERT

and UPDATE. In PITRE, this is managed by the IRepository interface (Table 4) imple-

mented by the Repository class—a component of DBsrv—that overrides some, and calls

other, methods of the Java hibernate object-relational mapping (ORM) library—a popu-

lar framework for mapping Java data types to SQL. For the purpose of this demonstra-

tion, the DBsrv process runs on the same host as the Srv process, but the MySQL database

is running on a remote Google Cloud instance in a datacentre somewhere in Sydney. Fig-

ure 3 expands on the model illustrated in Figure 2 to more accurately demonstrate this

architecture.

Figure 3: Actual topology of the PITRE distributed system. The third tier comprises the data-

base server module, which runs locally with the client and server in the demonstration, and the

MySQL Server database, which is in a Google Cloud instance in a Sydney datacentre.

Mark Jamsek, Muzhi Tian 14

CSI3344: Distributed Systems Report

5 User Manual

PITRE can be built and launched with a single command invoked from the root of the

work tree: pitre.sh and pitre.ps1 on Unix-like and Windows platforms, respectively.

However, build and run tasks can be performed independently (Listing 5.1).

pitre % ./pitre.sh -h

pitre.sh 0.10 - PITRE distributed system build and launch utility

-B do not build PITRE

-h show help and exit

-R do not run PITRE

-V show version number and exit

-v increase output verbosity

usage: pitre.sh [-BhRVv]

Listing 5.1: pitre.sh -h invocation to display help and usage.

5.1 Build

In both the repository and source tarball, the POSIX compliant shell script pitre.sh is

provided for Unix-like systems. This script should be invoked with the -R flag in the root

of the work tree to automate the build process. Messages are written to standard output

at each stage of the build and logs are written to the log/ directory.

pitre % ./pitre.sh -R

[+] checking java exists...ok

[+] checking gradle exists...ok

[+] building pitre packages...ok

[+] build finished

run PITRE with './pitre.sh -B'

Listing 5.2: Example of a successful pitre.sh -R invocation to build the PITRE distributed sys-

tem.

Mark Jamsek, Muzhi Tian 15

CSI3344: Distributed Systems Report

Listing 5.2 demonstrates output from a typical build. The only build dependencies

are Java and Gradle, and the latter is provided in the repository and source tarball. The

PowerShell script pitre.ps1 is provided for Windows platforms, which is functionally

equivalent to the POSIX script.

5.2 Run

A successful build operation must have been completed before running PITRE. Then,

pitre.sh should be invoked with the -B option to bypass the build process, initialise all

processes, and start the client application. An example pitre.sh -B invocation is shown

in Listing 5.3. On line 8, the rmiregistry is daemonised followed by a brief wait to allow

the registry to initialise. Without the wait, servers will be unable to bind their references

so the system will fail to properly start. On lines 10 and 11, the server and database

server, respectively, are initialised—again with a preset wait interval—before the client is

launched on line 12. After this, authentication prompts for a username on line 19.

1 pitre % ./pitre.sh -B

2 [+] checking java exists...ok

3 [+] pitre remote interfaces: ./pitre-interfaces/build/libs/pitre-interfaces-0.10.jar -> ok

4 [+] pitre sqldb server: ./pitre-dbsrv/build/libs/pitre-dbsrv-0.10.jar -> ok

5 [+] pitre server: ./pitre-server/build/libs/pitre-server-0.10.jar -> ok

6 [+] pitre client: ./pitre-client/build/libs/pitre-client-0.10.jar -> ok

7 [+] adding remote interfaces to classpath...ok

8 [+] daemonise rmiregistry

9 [+] wait for rmiregistry to initialise...ok

10 [+] initialising pitre db server...

11 [+] initialising pitre server...

12 [+] initialising pitre client...

13 PITRE - Personal Income Tax Return Estimate

14 ---

15

16 Please follow the prompts

17 (q)uit or (r)estart at any time

18

19 username:

Listing 5.3: Abridged output from a successful pitre.sh -B invocation.2

A short screencast of the build process followed by a brief runtime demonstration of

PITRE can be viewed at the following link: https://ss.jamsek.net/pitre-demo.mp4

2Initialisation output from both servers has been trimmed from the listing for the sake of clarity.

Mark Jamsek, Muzhi Tian 16

https://ss.jamsek.net/pitre-demo.mp4

CSI3344: Distributed Systems Report

5.2.1 Authentication

Credentials for the demonstration release:

username: test

password: test

5.3 Test Cases

PITRE has robust input handling to ensure only legal syntax and valid records are accep-

ted for generating TREs. Example test cases below demonstrate the defensive program-

ming employed during development.

5.3.1 Authentication

Listing 5.4 illustrates input handling of various username and password credentials.

PITRE - Personal Income Tax Return Estimate

Please follow the prompts

(q)uit or (r)estart at any time

username:

username must not be empty

username: test

characters will not be echoed to screen

password:

<srv> password must not be empty

please enter a valid username and password

username: test

password:

<srv> login failed

please enter a valid username and password

Listing 5.4: Failed authentication: empty username; empty password; and invalid credentials

Mark Jamsek, Muzhi Tian 17

CSI3344: Distributed Systems Report

5.3.2 Tax File Number Validation

Listing 5.5 illustrates validation of several invalid TFN formats including illegal charac-

ters and incorrect number of digits.

tax file number:

>>

please provide input

tax file number:

>> A01234567

tfn must be 9 digits

tax file number:

>> 01234567

tfn must be 9 digits

tax file number:

>> 0123456789

tfn must be 9 digits

Listing 5.5: Invalid tax file number: empty input, illegal character; and incorrect number of digits.

Mark Jamsek, Muzhi Tian 18

CSI3344: Distributed Systems Report

5.3.3 Income Record Validation

Listing 5.6 illustrates validation of illegal input to ensure income records are entered in

the required net,tax tuple format.

enter 26 biweekly pay records in the form 'net_pay,tax_withtheld'

(e.g., 4318.45,2027.70)

(q)uit or (r)estart at any time to discard changes

net,tax record 01:

>> six thousand, twenty-five hundred

values must be integers or floats up to 2 decimal places

net,tax record 01:

>> 6000 2500

invalid format; please enter records as 'net,tax' tuples

net,tax record 01:

>>

Listing 5.6: Example invalid string and whitespace delimited tuple input for income record 01.

5.3.4 No Tax File Number

Listing 5.7 demonstrates the case of a user with no TFN.

do you have a tfn [y/N]:

>> n

enter 26 biweekly pay records in the form 'net_pay,tax_withtheld'

(e.g., 4318.45,2027.70)

(q)uit or (r)estart at any time to discard changes

net,tax record 01:

>>

Listing 5.7: Demonstration of a user with no tax file number.

Mark Jamsek, Muzhi Tian 19

CSI3344: Distributed Systems Report

5.3.5 Tax File Number Found

Listing 5.8 demonstrates the case of a user with a TFN found in the database.

do you have a tfn [y/N]:

>> y

tax file number:

>> 123456789

<srv> load user records from database: jamsek,123456789

<sql> retrieve 26 rows from the database

tax records found: jamsek 123456789

1: 5150.10 2527.70

2: 5150.10 2527.70

...

25: 5150.10 2527.70

26: 5150.10 2527.70

request (e)stimate, (d)iscard and enter new records, (q)uit [d/E/q]:

>>

Listing 5.8: Example demonstration of a user with a tax file number on record.

Mark Jamsek, Muzhi Tian 20

CSI3344: Distributed Systems Report

5.3.6 Tax File Number Not Found

Listing 5.9 demonstrates the case of a user with a TFN not found in the database.

do you have a tfn [y/N]:

>> y

tax file number:

>> 012345678

<srv> load user records from database: demo1,012345678

<sql> retrieve 0 rows from the database

tax records not found: demo1 012345678

enter 26 biweekly pay records in the form 'net_pay,tax_withtheld'

(e.g., 4318.45,2027.70)

(q)uit or (r)estart at any time to discard changes

net,tax record 01:

>>

Listing 5.9: Example demonstration of a user with a tax file number not on record.

5.4 Windows Usage

Listing 5.10 illustrates pitre.ps1 usage in Windows PowerShell.

PS C:\src\pitre> .\pitre.ps1 -help

pitre.ps1 0.10 - PITRE distributed system build and launch utility

-buildonly do not run PITRE

-help show help and exit

-runonly do not build PITRE

-verbose increase output verbosity

-version show version number and exit

usage: pitre.ps1 [-buildonly -help -runonly -version -verbose]

Listing 5.10: pitre.ps1 -help output.

Mark Jamsek, Muzhi Tian 21

CSI3344: Distributed Systems Report

6 Summary

As the report demonstrated, this project explored distributed systems through the design

and development of a three-tier RMI implementation in Java. The fact RMI was invented

by Sun and introduced in Java, made the language a compelling choice. And the large,

mature ecosystem made implementation trivial—especially when compared to previous

and continuing work on the Game of Trees3 (got) and Fossil4 distributed version con-

trol systems written with sockets in ANSI C. Correspondingly, RMI and extensive library

support facilitated rapid development; indeed, third-tier work was relatively straight for-

ward with the hibernate ORM solution. In addition, the "write once, run anywhere" cross-

platform benefit of Java compiled bytecode—without compromising speed—was an es-

pecially appealing factor. However, one notable limitation was considered during the ini-

tial design phase: RMI in Java exacts a monolithic architecure. By implementing PITRE in

Java, the project would be limited to Java; that is, any desired extensions to the feature set

would have to be implemented in Java. For example, new server implementations would

be confined to Java due to object serialization compatibility. Likewise, development of a

web frontend client would have to be written as a Java applet. This is compounded by

Java being highly susceptible to remote code execution because of deserialisation vulner-

abilities that can be used to chain return-oriented programming (ROP) gadgets (Sayar et

al., 2023, p. 37). In fact, according to van der Stock et al. (2021), this class of vulnerability

is ranked eighth on the Open Worldwide Application Security Project (OWASP) Top Ten

list of the most dangerous web application security vulnerabilities. Trivial development

notwithstanding, due to these factors, neither RMI nor Java would be recommended for

future distributed programming intended to be published. Instead, gRPC5 in C++ offers

several advantages such as protocol buffers for serialisation, native asynchronous com-

munication, and support for multiple languages. Nonetheless, PITRE demonstrates the

convenience of RMI in distributed systems development and presented a learning op-

portunity for distributed programming with a once favoured communication model in

Java.

3https://gameoftrees.org
4https://fossil-scm.org
5https://grpc.io

Mark Jamsek, Muzhi Tian 22

https://gameoftrees.org
https://fossil-scm.org
https://grpc.io

CSI3344: Distributed Systems Report

References

Australian Taxation Office. (2021). Single touch payroll. https : / / www. ato . gov. au /

Business/Single-Touch-Payroll/

Coulouris, G., Dollimore, J., Kindberg, T. & Blair, G. (2014). Distributed Systems Concepts

and Design (5th ed.). Addison-Wesley.

Domenici, A., Superiore, S., Anna, P. & E-mail, I. (2000). Object-oriented techniques for

distributed computation. https://www.researchgate.net/publication/2367494_

Object-Oriented_Techniques_for_Distributed_Computation

Hyperskill. (n.d.). Three-tier architecture. https://hyperskill.org/learn/step/25083

McCaffrey, C. & Meiklejohn, C. (2016). A brief history of distributed programming: RPC.

Code Mesh 2016. https://codemesh.io/codemesh2016/caitie-mccaffrey.

Mousa, A., Karabatak, M. & Mustafa, T. (2020). Database security threats and challenges.

2020 8th International Symposium on Digital Forensics and Security (ISDFS), 1–5.

https://doi.org/10.1109/ISDFS49300.2020.9116436

Sayar, I., Bartel, A., Bodden, E. & Le Traon, Y. (2023). An in-depth study of java deserializ-

ation remote-code execution exploits and vulnerabilities. ACM Trans. Softw. Eng.

Methodol., 32(1), 25–70. https://doi.org/10.1145/3554732

Taboada, G. L., Touriño, J. & Doallo, R. (2009). Java for High Performance Computing:

Assessment of Current Research and Practice. Proceedings of the 7th International

Conference on Principles and Practice of Programming in Java, 30–39. https ://doi .

org/10.1145/1596655.1596661

Tanenbaum, A. S. & Steen, M. V. (2014). Distributed Systems Principles and Paradigms (2nd ed.).

Pearson.

van der Stock, A., Glas, B., Smithline, N. & Gigler, T. (2021). Open worldwide application se-

curity project top ten (tech. rep. OWASP Top 10:2021). The Open Worldwide Applic-

ation Security Project Foundation. Wakefield, Massachusetts. https://doi.org/

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

Waldo, J. (1998). Remote procedure calls and java remote method invocation. IEEE Con-

currency, 6(3), 5–7. https://doi.org/10.1109/4434.708248

Mark Jamsek, Muzhi Tian 23

https://www.ato.gov.au/Business/Single-Touch-Payroll/
https://www.ato.gov.au/Business/Single-Touch-Payroll/
https://www.researchgate.net/publication/2367494_Object-Oriented_Techniques_for_Distributed_Computation
https://www.researchgate.net/publication/2367494_Object-Oriented_Techniques_for_Distributed_Computation
https://hyperskill.org/learn/step/25083
https://codemesh.io/codemesh2016/caitie-mccaffrey
https://doi.org/10.1109/ISDFS49300.2020.9116436
https://doi.org/10.1145/3554732
https://doi.org/10.1145/1596655.1596661
https://doi.org/10.1145/1596655.1596661
https://doi.org/https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://doi.org/https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://doi.org/10.1109/4434.708248

CSI3344: Distributed Systems Report

Weisenburger, P., Wirth, J. & Salvaneschi, G. (2020). A survey of multitier programming.

ACM Comput. Surv., 53(4). https://doi.org/10.1145/3397495

Mark Jamsek, Muzhi Tian 24

https://doi.org/10.1145/3397495

	Executive Summary
	Introduction
	Requirements and Scope
	Client: Presentation Tier
	Server: Business Logic Tier
	Database Server: Data Management Tier

	Remote Method Invocation
	PITRE: Overview
	Design and Implementation
	Interfaces
	Client
	Server
	Database Server

	User Manual
	Build
	Run
	Authentication

	Test Cases
	Authentication
	Tax File Number Validation
	Income Record Validation
	No Tax File Number
	Tax File Number Found
	Tax File Number Not Found

	Windows Usage

	Summary
	References

